
Chapter 12 Java FX

JDK and JavaFX

JavaFX is removed from JDK. You need to install it separately after you have installed JDK.

Download JavaFX

Go to https://gluonhq.com/products/javafx/ and download JavaFX SDK for your operating system.

The downloaded SDK is a zip file. Extract it and place it in the same directory as JDK.

Once installed, you need to configure the settings in IDEs to compile and run JavaFX programs.

I recommend using different IDEs for different type of applications as shown in the following table.

JavaFX FXML Application “Regular” JavaFX Application Java Swing Application

IntelliJ jGRASP NetBeans

 Eclipse

Instructions for configuring the IDE’s settings

Using JavaFX in jGRASP

https://gluonhq.com/products/javafx/

https://gist.github.com/stevenliebregt/bc62a382fc43064136b662ee62172ab3

https://gist.github.com/stevenliebregt/bc62a382fc43064136b662ee62172ab3

Using JavaFX in IntelliJ

Go to File -> Project Structure -> Project

Set the project SDK and set the language level.

Create a library

Go to File -> Project Structure -> Libraries

Click “+” sign to add the library and point to the lib folder of the JavaFX SDK.

Define a Global Variable and Add VM options

Go to Preferences (File -> Settings) -> Appearance & Behavior -> Path Variables, and define the name of

the variable as PATH_TO_FX, and browse to the lib folder of the JavaFX SDK to set its value, and click

apply.

Then you can refer to this global variable when setting the VM options as:

--module-path ${PATH_TO_FX} --add-modules javafx.controls,javafx.fxml

Alternatively, you can add VM option to each individual project

Click on Run -> Edit Configurations... and add the VM options:

--module-path “C:\Program Files\Java\javafx-sdk-11.0.2\lib" --add-modules javafx.controls,javafx.fxml

12.1 Graphical User Interfaces

GUI (“gooey”)

In a GUI application, the user determines the order in which things happen.

The program responses to the actions of the user to handle the event.

12.2 Introduction to JavaFX

JavaFX is a standard Java library for creating GUI applications, as well as applications that display 2D

and 3D graphics.

Controls

They are visual objects.

- Label

- TextField

- Button

Stages and Scenes

JavaFX Application

Theater

The stage is a window.

Stage

The scene is a collection of GUI controls

contained within the window.

Scene

GUI objects make up the scene.

Actors

The Application Class

It is an abstract class that has an abstract method called start(), which is the entry point for the JavaFX

application.

All JavaFX applications must extend it.

The program crates a stage but does not have a scene.

The main() method does only one thing: calling the launch() method.

The launch() method is inherited from the Application class.

- It creates a Stage object

- It calls the start() method and passes a reference to the Stage object as an argument.

The start() method must be overridden.

- It has a parameter, primaryStage, to refer to the Stage object passed by the launch() method.

12.3 Creating Scenes

A scene is a collection of controls and other objects.

The steps to creating a scene:

1. Create the controls

2. Create a layout container of some type, and add controls to the container

3. Create a Scene object, and add the container to the Scene object

4. Add the Scene object to the stage.

HelloWorld2.java

Creating Controls

- Label control

Creating Layout Containers

Use layout containers to arrange the positions of controls on the scene.

HBox Arranges controls in a single horizontal row

VBox Arranges controls in a single vertical row

GridPane Arranges controls in a grid with rows and columns

HBox hbox = new HBox(new Lable(“Hello”)); //Create an HBox and add a Label control

HBox hbox = new HBox(new Lable(“Hello”), new Label(“World”)); //add two Label controls

Creating a Scene Object

Scene scene = new Scene(hbox); //create a Scene and add the HBox as the root node

 //Label object with in the HBox is the leaf node.

Adding the Scene Object to the Stage

primaryStage.setScene(scene);

Setting the Size of the Scene

The default size is very small, just enough to display the contents of the scene. It is known as the preferred

size.

You can add width in pixel and height in pixel as arguments.

Aligning Controls in an HBox Layout Container

hbox.setAlignment(Pos.CENTER);

Pos is in javafx.geometry package.

Pos.TOP_LEFT

Pos.TOP_CENTER Pos.TOP_RIGHT

Pos.CENTER_LEFT Pos.CENTER Pos.CENTER_RIGHT

Pos.BOTTOM_LEFT Pos.BOTTOM_CENTER Pos.BOTTOM_RIGHT

12.4 Displaying Images

Two-step process:

1. Load the image into memory

2. Display the image

Import both Image and ImageView classes which are in the javafx.scene.image package.

ImageDemo.java

- The Image class supports bmp, jpeg, gif, and png file types.

- file: is the protocol indicating the file in on the local computer.

- Same directory

- Add Image object to ImageView object

- Add ImageView object to HBox

Loading Images from an Internet Location

Image image = new Image(“http://www.gaddisbooks.com/images/HotAirBallon.jpg”);

Setting the Size of an Image

imageView.setFitWidth(100);

imageView.setFitHeight(100);

Preserving the Image’s Aspect Ratio

imageView.setPreserveRatio(true); true or false

Changing an ImageView Image

imageView.setImage(newImage);

12.5 More about the HBox, VBox, and GridPane Layout Containers

The HBox Layout Container

It arranges one or more controls in a single horizonal row.

You can also add spacing between images and padding around images in pixels.

// Put the ImageViews in an HBox.

HBox hbox = new HBox(moonIView, shipIView, sunsetIView);

// Put the ImageViews in an HBox with 10 pixels spacing.

HBox hbox = new HBox(10, moonIView, shipIView, sunsetIView);

// Put 30 pixels of padding around the HBox.

hbox.setPadding(new Insets(30));

The VBox Layout Container

It arranges one or more controls in a single vertical row.

You can also add spacing between images and padding around images in pixels.

// Put the ImageViews in a VBox with 10 pixels spacing.

VBox vbox = new VBox(10, moonIView, shipIView, sunsetIView);

// Put 30 pixels of padding around the VBox.

vbox.setPadding(new Insets(30));

http://www.gaddisbooks.com/images/HotAirBallon.jpg

The GridPane Layout Container

It arranges the contents in a grid with columns and rows.

GridPaneDemo.java

- Add controls at specific positions

- Set gaps between columns and rows

Using Multiple Layout Containers in the Same Screen

- Use multiple layout containers

- Nest a layout inside another layout

NestedLayout.java

- Two images are added to a VBox

- The Label is added to the GridPane at column 0, row 0

- The VBox is added to the GridPane at column 1, row 0

12.6 Button Controls and Events

Clicking a button causes an action event that the program should handle.

ButtonDeme.java

- Create a Button control and add it to the VBox

- The action event is not handled.

Handling Events

When an event occurs, the control responsible for the event creates an event object that contains

information about the event.

The control that triggered the event is the event source, for example, button.

The event object is the instance of the Event class or one of its subclasses.

- When a Button is clicked, the ActionEvent object is created.

- ActionEvent is the subclass of the Event class.

To handle the event, one or more event handlers is needed to connect to the event source.

The event handler is an object that responds to the event.

If the event source and the event handler are connected, a specific method in the event handler is called

and the event object is passed as an argument to the method.

- This process is also called event firing.

Writing Event Handlers

The class must implement the EventHandler interface.

This interface has a void method named handle().

class ButtonClickHandler implements EventHandler<ActionEvent> {

 @Override

 public void handle(ActionEvent event) {

 myLabel.setText("Thanks for clicking the button!");

 }

}

Registering an Event Handler

Connecting the control with the handler.

myButton.setOnAction(new ButtonClickHandler());

Now, clicking myButton will trigger the ButtonClickHandler’s handle() to be executed.

12.7 Reading Input with TextField Controls

kiloTextField.getText() //return the content in the TextField as a string

resultLabel.setText(“Hello”); //set a string to the Label control

12.8 Using Anonymous Inner Classes and Lambda Expressions to Handle Events

Using Anonymous Inner Classes to Create Event Handlers

Using Lambda Expressions to Create Event Handlers

12.9 The BorderPane Layout Container

It displays the content in five regions: top, bottom, left, right, and center.

12.10 The ObserveableList Interface

An object that implements the ObserveableList is a special type of list that can fire an event handler any

time an item in the list changes.

